This post document the solutions to 100 integrals (Problem 1 to 10) solved by @blackpenredpen in his 5h++ marathon endeavor.
Trig Substitution:
\[\begin{aligned} u &= \mathrm{sec}(x)\\ du &= \mathrm{sec}(x)\mathrm{tan}(x)\ dx \end{aligned}\] \[\begin{aligned} \int (u^{2} - 1)^{2}u^{2}\ du &= \int u^{6} - 2u^{4} + u^{2}\ du\\ &= \frac{1}{7}u^{7} - \frac{2}{5}u^{5} + \frac{1}{3}u^{3} + C\\ &= \frac{1}{7}\mathrm{sec}^{7}(x) - \frac{2}{5}\mathrm{sec}^{5}(x) + \frac{1}{3}\mathrm{sec}^{3}(x) + C \end{aligned}\]Double-Angle Formula:
\[\begin{aligned} \mathrm{cos}(2x) &= \mathrm{cos}^{2}(x) - \mathrm{sin}^{2}(x) \end{aligned}\] \[\begin{aligned} \int \frac{\mathrm{cos}(2x)}{\mathrm{sin}(x) + \mathrm{cos}(x)}\ dx &= \int \frac{\mathrm{cos}^{2}(x) - \mathrm{sin}^{2}(x)}{\mathrm{sin}(x) + \mathrm{cos}(x)} \ dx\\ &= \int \frac{\Big(\mathrm{cos}(x) - \mathrm{sin}(x)\Big)\Big(\mathrm{cos}(x) + \mathrm{sin}(x)\Big)}{\mathrm{sin}(x) + \mathrm{cos}(x)}\ dx\\ &= \int \mathrm{cos}(x) - \mathrm{sin}(x) \ dx\\ &= \mathrm{sin}(x) + \mathrm{cos}(x) + C \end{aligned}\]Trig Substitution:
\[\begin{aligned} u & = x - \frac{1}{x}\\ du &= \Big(1 + \frac{1}{x^{2}}\Big)\ dx \end{aligned}\] \[\begin{aligned} \int \frac{1}{u^{2} + 1}\ du &= \mathrm{tan}^{-1}(u) + C\\ &= \mathrm{tan}^{-1}\Big(x - \frac{1}{x}\Big) + C \end{aligned}\]Integration by parts:
\[\begin{aligned} u &= 2x\\ dv &= e^{x} \ dx\\ v &= e^{x}\\ du &= 2 dx\\ \int u \ dv &= uv - \int v\ du\\ &= 2xe^{x} - \int 2e^{x}\ dx\\ &= 2xe^{x} - 2e^{x}\ dx \end{aligned}\] \[\begin{aligned} \int x^{2} + 2xe^{x} + e^{2x}\ dx &= \frac{1}{3}x^{3} + 2xe^{x} - 2e^{x} + \frac{1}{2}e^{2x} + C \end{aligned}\]Pythagorean Identity:
\[\begin{aligned} \mathrm{sin}^{2}(x) + \mathrm{cos}^{2}(x) = 1 \end{aligned}\] \[\begin{aligned} \int \mathrm{csc}^{3}(x)\mathrm{sec}(x)\ dx &= \int \frac{1}{\mathrm{sin}^{3}(x)\mathrm{cos}(x)}\ dx\\[3pt] &= \int \frac{\mathrm{sin}^{2}(x) + \mathrm{cos}^{2}(x)}{\mathrm{sin}^{3}(x)\mathrm{cos}(x)}\ dx\\[3pt] &= \int \frac{\mathrm{sin}^{2}(x)}{\mathrm{sin}^{3}(x)\mathrm{cos}(x)} + \frac{\mathrm{cos}^{2}(x)}{\mathrm{sin}^{3}(x)\mathrm{cos}(x)}\ dx\\[3pt] &= \int \frac{1}{\mathrm{sin}(x)\mathrm{cos}(x)} + \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx\\[3pt] &= \int \frac{\mathrm{sin}^{2}(x) + \mathrm{cos}^{2}(x)}{\mathrm{sin}(x)\mathrm{cos}(x)} + \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx\\[3pt] &= \int \frac{\mathrm{sin}^{2}(x)}{\mathrm{sin}(x)\mathrm{cos}(x)} + \frac{\mathrm{cos}^{2}(x)}{\mathrm{sin}(x)\mathrm{cos}(x)} + \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx\\[3pt] &= \int \frac{\mathrm{sin}(x)}{\mathrm{cos}(x)} + \frac{\mathrm{cos}(x)}{\mathrm{sin}(x)} + \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx\\[3pt] &= \int \mathrm{tan}(x) + \mathrm{cot}(x) + \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx\\[3pt] &= \mathrm{ln}|\mathrm{sec}(x)| + \mathrm{ln}|\mathrm{sin}(x)| + \int \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx \end{aligned}\]Trig Substitution:
\[\begin{aligned} u & = \mathrm{sin}(x)\\ du &= \mathrm{cos}(x)\ dx\\ \int \frac{1}{u^{3}}\ du &= \frac{1}{2 u^{2}}\\ &= \frac{1}{2 \mathrm{sin}^{2}(x)} \end{aligned}\] \[\begin{aligned} \mathrm{ln}|\mathrm{sec}(x)| + \mathrm{ln}|\mathrm{sin}(x)| + \int \frac{\mathrm{cos}(x)}{\mathrm{sin}^{3}(x)}\ dx &= \mathrm{ln}|\mathrm{sec}(x)| + \mathrm{ln}|\mathrm{sin}(x)| - \frac{1}{2 \mathrm{sin}^{2}(x)} + C\\ &= \mathrm{ln}|\mathrm{sec}(x)\mathrm{sin}(x)| - \frac{1}{2 \mathrm{sin}^{2}(x)} + C\\ &= \mathrm{ln}|\mathrm{tan}(x)| - \frac{1}{2}\mathrm{csc}^{x} + C \end{aligned}\]Trig Substitution:
\[\begin{aligned} u &= \mathrm{sin}(x)\\ du &= \mathrm{cos}(x)\ dx \end{aligned}\] \[\begin{aligned} \int \frac{1}{u^{2} - 5u - 6}\ du &= \int \frac{1}{(u - 6)(u +1)} \ du\\[5pt] &= \int \frac{\frac{1}{7}}{u - 6} - \frac{\frac{1}{7}}{u + 1} \ du\\[5pt] &= \frac{1}{7}\mathrm{ln}\Big|\frac{u - 6}{u + 1}\Big| + C\\[5pt] &= \frac{1}{7}\mathrm{ln}\Big|\frac{\mathrm{sin}(x) - 6}{\mathrm{sin}(x) + 1}\Big| + C \end{aligned}\]Trig Substitution:
\[\begin{aligned} u &= \sqrt{e^{x} - 1}\\ du &= \frac{e^{x}}{2\sqrt{e^{x} - 1}}\ dx\\[5pt] dx &= \frac{2\sqrt{e^{x} - 1}}{e^{x}} \ du\\[5pt] dx &= \frac{2u}{e^{x}} \ du\\[5pt] u^{2} &= e^{x} - 1\\[5pt] u^{2} + 1 &= e^{x}\\[5pt] \end{aligned}\] \[\begin{aligned} \int \frac{e^{x}\sqrt{e^{x} - 1}}{e^{x} + 3}\ dx &= \int \frac{e^{x}u}{(u^{2} + 1) + 3} \frac{2u}{e^{x}} \ du\\[5pt] &= 2\int \frac{u^{2}}{u^{2} + 4} \ du\\[5pt] &= 2\int \frac{u^{2} - 4 + 4}{u^{2} + 4} \ du\\[5pt] &= 2\int \frac{u^{2} - 4}{u^{2} + 4} + \frac{4}{u^{2} + 4} \ du\\[5pt] &= 2\Big(\int 1 \ du - 4\int \frac{1}{u^{2} + 2^{2}}\ du\Big)\\[5pt] &= 2 \Big(u - 4\times\frac{1}{2}\mathrm{tan}^{-1}\Big(\frac{u}{2}\Big)\Big) + C\\[5pt] &= 2 \sqrt{e^{x} - 1} - 4\mathrm{tan}^{-1}(\frac{\sqrt{e^{x} - 1}}{2}) + C \end{aligned}\]Trig Substitution:
\[\begin{aligned} u &= \sqrt{x} + 1\\ du &= \frac{1}{2\sqrt{x}}\ dx\\ dx &= 2\sqrt{x}\ du \end{aligned}\] \[\begin{aligned} \int \frac{1}{\sqrt{x}(\sqrt{x} + 1)}\ dx &= \int \frac{1}{\sqrt{x}u}2\sqrt{x}\ du\\ &= \int \frac{2}{u}\ du\\ &= 2 \mathrm{ln}|\sqrt{x} + 1| + C\\ &= 2 \mathrm{ln}(\sqrt{x} + 1) + C \end{aligned}\]Draw a graph of \(\|x - 3\|\) and add up the 2 triangles:
\[\begin{aligned} \int_{-1}^{5} |x - 3| \ dx &= \frac{1}{2}\times 4^{2} + \frac{1}{2}\times 2^{2}\\ &= 8 + 2\\ &= 10 \end{aligned}\]