Fourier Transform

Read Post

In this post we will talk about Fourier Transform.

Aperiodic Signals

Fourier series assumes that the signal is periodic. But what do we do if the isignal is aperiodic? A trick is to extend the fundamental period from T0T_{0} to \infty when representing it using Fourier series coefficients.

Recall the fourier series coefficients for a continous-time signal:

Ck=1T0T02T02f(t)eiω0kt dt\begin{aligned} C_{k} &= \frac{1}{T_{0}}\int_{\frac{-T_{0}}{2}}^{\frac{T_{0}}{2}}f(t)e^{-i\omega_{0} kt}\ dt \end{aligned}

The period as a function of frequency ω0\omega_{0}:

ω0=2πT02T0=ω02π\begin{aligned} \omega_{0} &= \frac{2\pi}{T_{0}}\\ \frac{2}{T_{0}} &= \frac{\omega_{0}}{2\pi} \end{aligned}

And taking the limit to \infty, ω0\omega_{0} will be infinitesimally small and represented by Δω\Delta \omega:

limT02T0Δω2π\begin{aligned} \lim_{T_{0} \to \infty}\frac{2}{T_{0}} &\approx \frac{\Delta \omega}{2\pi} \end{aligned}

We re-write CkC_{k} equation:

Ck=Δω2πT02T02f(t)eiω0kt dt\begin{aligned} C_{k} &= \frac{\Delta \omega}{2\pi}\int_{\frac{-T_{0}}{2}}^{\frac{T_{0}}{2}}f(t)e^{-i\omega_{0} kt}\ dt \end{aligned}

Inserting this into the fourier series:

x(t)=k={Δω2πT02T02f(t)eiω0kt dt}eikω0t\begin{aligned} x(t) &= \sum_{k = -\infty}^{\infty}\Big\{ \frac{\Delta \omega}{2\pi}\int_{\frac{-T_{0}}{2}}^{\frac{T_{0}}{2}}f(t)e^{-i\omega_{0} kt}\ dt\Big\}e^{ik\omega_{0}t} \end{aligned}

We re-write the equation as:

x(t)=12πk={f(t)eiω0kt dt}eikωt dω=12πk=X(ω)eikωt dω\begin{aligned} x(t) &= \frac{1}{2\pi}\sum_{k = -\infty}^{\infty}\Big\{ \int_{-\infty}^{\infty}f(t)e^{-i\omega_{0} kt}\ dt\Big\}e^{ik\omega t}\ d\omega\\ &= \frac{1}{2\pi}\sum_{k = -\infty}^{\infty}X(\omega)e^{ik\omega t}\ d\omega \end{aligned}

Essentially we have broken up the signal into its frequency components as weights and multiplying them by the orthogonal basis function eikωte^{ik\omega t} and adding them up. Note that if X(ω)X(\omega) is symmetric, the imaginary components (isin(ω)ti sin(\omega)t) will cancel out and result in a real signal.

X(ω)X(\omega) defined as the Fourier transform:

X(ω)=f(t)eiωt dt\begin{aligned} X(\omega) &= \int_{-\infty}^{\infty}f(t)e^{-i\omega t}\ dt \end{aligned}

And the following is the Inverse Fourier Transform:

x(t)=12πk=X(ω)eikωt dω\begin{aligned} x(t) &= \frac{1}{2\pi}\sum_{k = -\infty}^{\infty}X(\omega)e^{ik\omega t}\ d\omega \end{aligned}

We can also write out the Fourier Transform in terms of its magnitude and phase:

X(ω)=X(ω)eiX(ω)\begin{aligned} X(\omega) &= |X(\omega)|e^{i \angle X(\omega)} \end{aligned}

The whole derivation above is to show that it is possible to do a Fourier Transform on an aperiodic signal.

Delta Function

Dirac defined the delta function as a sum of infinite number of exponentials:

δ(t)=12πeiωt dω\begin{aligned} \delta(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega t}\ d\omega \end{aligned}

And in the frequency domain:

δ(t)=12πeiωt dt\begin{aligned} \delta(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega t}\ dt \end{aligned}

The general version with time/frequency shift:

δ(tt0)=12πeiω(tt0) dωδ(ωω0)=12πei(ωω0)t dt\begin{aligned} \delta(t - t_{0}) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega (t - t_{0})}\ d\omega\\[5pt] \delta(\omega - \omega_{0}) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i(\omega - \omega_{0})t}\ dt \end{aligned}

Periodic Signals

A periodic signal can be represented in FSC (Fourier Series Coefficients) form:

x(t)=k=Ckeiω0t\begin{aligned} x(t) &= \sum_{k = -\infty}^{\infty}C_{k}e^{i\omega_{0}t} \end{aligned}

Taking the fourier transform:

X(ω)=F{x(t)}=F{k=Ckeiω0t}=k=CkF{eiω0t}\begin{aligned} X(\omega) &= \mathcal{F}\{x(t)\}\\ &= \mathcal{F}\Big\{\sum_{k = -\infty}^{\infty}C_{k}e^{i\omega_{0}t}\Big\}\\ &= \sum_{k = -\infty}^{\infty}C_{k}\mathcal{F}\{e^{i\omega_{0}t}\}\\ \end{aligned}

It boils down to taking the fourier transform of an exponential signal:

eiω0t=cos(ω0t)+isin(ω0t)X(eiω0t)=X(cos(ω0t))+iX(sin(ω0t))\begin{aligned} e^{i\omega_{0}t} &= \mathrm{cos}(\omega_{0}t) + i \mathrm{sin}(\omega_{0}t)\\ X(e^{i\omega_{0}t}) &= X(\mathrm{cos}(\omega_{0}t)) + i X(\mathrm{sin}(\omega_{0}t))\\ \end{aligned}

Fourier transform of a cosine:

X(ω)=F(cos(ω0t))=12(eiω0t+eiω0t)eiωt dt=12ei(ω0+ω0)t dt+12ei(ω0ω0)t dt\begin{aligned} X(\omega) &= \mathcal{F}(\mathrm{cos}(\omega_{0}t))\\ &= \int_{-\infty}^{\infty}\frac{1}{2}(e^{i\omega_{0}t} + e^{-i\omega_{0}t})e^{i\omega t}\ dt\\ &= \int_{-\infty}^{\infty}\frac{1}{2}e^{i(\omega_{0} + \omega_{0})t}\ dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{i(\omega_{0} - \omega_{0})t}\ dt \end{aligned}

As discussed in the Delta Function section, we can see that:

δ(ωω0)=12πei(ωω0)t dtπδ(ωω0)=12ei(ωω0)t dt\begin{aligned} \delta(\omega - \omega_{0}) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i(\omega - \omega_{0})t}\ dt\\ \pi\delta(\omega - \omega_{0}) &= \frac{1}{2}\int_{-\infty}^{\infty}e^{i(\omega - \omega_{0})t}\ dt\\ \end{aligned}

Hence:

F{cos(ω0t)}=12ei(ω+ω0)t dt+12ei(ωω0)t dt=πδ(ω+ω0)+πδ(ωω0)\begin{aligned} \mathcal{F}\{cos(\omega_{0}t)\} &= \int_{-\infty}^{\infty}\frac{1}{2}e^{i(\omega + \omega_{0})t}\ dt + \int_{-\infty}^{\infty}\frac{1}{2}e^{i(\omega - \omega_{0})t}\ dt\\ &= \pi\delta(\omega + \omega_{0}) + \pi\delta(\omega - \omega_{0}) \end{aligned}

Similarly, for sine:

X(ω)=F{sin(ω0t)}=iπδ(ω+ω0)iπδ(ωω0)\begin{aligned} X(\omega) &= \mathcal{F}\{\mathrm{sin}(\omega_{0}t)\}\\ &= i\pi\delta(\omega + \omega_{0}) - i\pi\delta(\omega - \omega_{0}) \end{aligned}

Using the above result:

X(eiω0t)=X(cos(ω0t))+iX(sin(ω0t))=πδ(ω+ω0)+πδ(ωω0)+i2(πδ(ω+ω0)i2πδ(ωω0))=πδ(ωω0)i2πδ(ωω0)+πδ(ω+ω0)+i2πδ(ω+ω0)=πδ(ωω0)+πδ(ωω0)+πδ(ω+ω0)πδ(ω+ω0)=2πδ(ωω0)\begin{aligned} X(e^{i\omega_{0}t}) &= X(\mathrm{cos}(\omega_{0}t)) + i X(\mathrm{sin}(\omega_{0}t))\\ &= \pi\delta(\omega+\omega_{0}) + \pi\delta(\omega - \omega_{0}) + i^{2}(\pi\delta(\omega + \omega_{0}) - i^{2}\pi\delta(\omega-\omega_{0}))\\ &= \pi\delta(\omega-\omega_{0}) - i^{2}\pi\delta(\omega - \omega_{0}) + \pi\delta(\omega + \omega_{0}) + i^{2}\pi\delta(\omega + \omega_{0})\\ &= \pi\delta(\omega-\omega_{0}) + \pi\delta(\omega - \omega_{0}) + \pi\delta(\omega + \omega_{0}) - \pi\delta(\omega + \omega_{0})\\ &= 2\pi\delta(\omega - \omega_{0}) \end{aligned}

Back to the fourier transform of a periodic signal:

X(ω)=F{x(t)}=F{k=Ckeiω0t}=k=CkF{eiω0t}=2πk=Ckδ(ωkω0)\begin{aligned} X(\omega) &= \mathcal{F}\{x(t)\}\\ &= \mathcal{F}\Big\{\sum_{k = -\infty}^{\infty}C_{k}e^{i\omega_{0}t}\Big\}\\ &= \sum_{k = -\infty}^{\infty}C_{k}\mathcal{F}\{e^{i\omega_{0}t}\}\\ &= 2\pi \sum_{k = -\infty}^{\infty}C_{k}\delta(\omega - k\omega_{0}) \end{aligned}

This is essentially the same as the discrete fourier series coefficient of the signal but scaled to be 2π2\pi bigger. This is due to X(ω)X(\omega) being periodic with a period of 2π2\pi.

Discrete Fourier Transform

Up till now, what we have been referring to is the Continuous Fourier Transfor:

X(ω)=f(t)eiωt dt\begin{aligned} X(\omega) &= \int_{-\infty}^{\infty}f(t)e^{-i\omega t}\ dt \end{aligned}

For DFT:

X(k)=n=0N1x(n)eiωknωk=2πkNk={0,,N1}\begin{aligned} X(k) &= \sum_{n = 0}^{N - 1}x(n)e^{-i\omega_{k} n}\\[5pt] \omega_{k} &= 2\pi \frac{k}{N}\\[5pt] k &= \{0, \cdots, N-1\} \end{aligned}

Instead of t, we replaced it with nn. And we are dividing ωk\omega_{k} into NN parts spanning 2π2\pi interval.

If you look closely at the DFT equation, you could see that it is essentially finding the correlation of the NN sample data against NN equally spaced complex frequencies eiωkne^{-i\omega_{k} n} which are orthogonal basis functions.

For IDFT (Inverse Discrete FT):

xn=1Nk=0N1Xke+iωknωk=2πkNn={0,,N1}\begin{aligned} x_{n} &= \frac{1}{N}\sum_{k = 0}^{N-1}X_{k}e^{+i \omega_{k}n}\\[5pt] \omega_{k} &= 2\pi \frac{k}{N}\\[5pt] n &= \{0, \cdots, N-1\} \end{aligned}

So NN number of time series data points are transformed to NN frequency points, and the inverse transform will transform NN frequency points back into NN data points.

Note that there are NN multiplications for each kk and there are NN multiplications, resulting in N2N^{2} muliplications which grows computationally large for large NN. We shall look at Fast Fourier Transform next to cut the computational time to Nlog(N)N \mathrm{log}(N).

Let us take a cosine wave with the following info:

f=1fs=16fn=162=8\begin{aligned} f &= 1\\ f_{s} &= 16\\ f_{n} &= \frac{16}{2}\\ &= 8 \end{aligned}

In other words, the frequency of the cosine curve is 1Hz. Sampling requency fsf_{s} is 8Hz (FFT works well with powers of 2) and the Nyquist frequency fnf_{n} is 4Hz. This means that the maximum frequency that can be detected is 4Hz. Any higher will result in aliasing and mathematically it cannot detect the difference.

Using R FFT routine to verify the result, we get the following result:

fs <- 8
fn <- fs / 2
f <- 1
omega <- 2 * pi * f
n <- seq(0, 1, length = fs)
xn <- cos(omega * n[1:length(n)])
fft(xn)

> xn
[1]  1.0000000
[2]  0.6234898
[3] -0.2225209
[4] -0.9009689
[5] -0.9009689
[6] -0.2225209
[7]  0.6234898
[8]  1.0000000

> fft(xn)
[1]  0.9999999999999990007993+0.0000000i
[2]  3.8433767734721757669547+1.5919788i
[3] -0.3019377358048381254640-0.3019377i
[4] -0.0414390376673379190464-0.1000427i
[5]  0.0000000000000007771561+0.0000000i
[6] -0.0414390376673376970018+0.1000427i
[7] -0.3019377358048382364863+0.3019377i
[8]  3.8433767734721762110439-1.5919788i       

We can see index 2 has the highest value. Because we start with n=0n = 0, and R starts with index 1, index 2 has k=1k = 1 and index 1 is the DC offset.

index 1=DC Offsetindex 2=1 Hzindex 3=2 Hzindex 4=3 Hzindex 5=4 Hzindex 5=3 Hzindex 5=2 Hzindex 5=1 Hz\begin{aligned} \text{index 1} &= \text{DC Offset}\\ \text{index 2} &= \text{1 Hz}\\ \text{index 3} &= \text{2 Hz}\\ \text{index 4} &= \text{3 Hz}\\ \text{index 5} &= \text{4 Hz}\\ \text{index 5} &= \text{3 Hz}\\ \text{index 5} &= \text{2 Hz}\\ \text{index 5} &= \text{1 Hz} \end{aligned}

Anything higher than the Nyquist rate will result in aliasing, so the result is repeated but reflected.

We will do a calculation for index 2:

ωk=1=2π116X(k=1)=n=0N1x(n)eiωkn= 1.0000000×eiω10+0.6234898×eiω11+0.2225209×eiω12+0.9009689×eiω13+0.9009689×eiω14+0.2225209×eiω15+0.6234898×eiω16+1.0000000×eiω17\begin{aligned} \omega_{k = 1} = &2\pi\frac{1}{16}\\ X(k = 1) = &\sum_{n = 0}^{N-1}x(n)e^{-i\omega_{k}n}\\ =\ &1.0000000 \times e^{-i\omega_{1}0} + 0.6234898 \times e^{-i\omega_{1}1} +\\ &-0.2225209 \times e^{-i\omega_{1}2} + -0.9009689 \times e^{-i\omega_{1}3} +\\ &-0.9009689 \times e^{-i\omega_{1}4} + -0.2225209 \times e^{-i\omega_{1}5} +\\ &0.6234898 \times e^{-i\omega_{1}6} + 1.0000000 \times e^{-i\omega_{1}7} \end{aligned}

Using R to calculate the value:

omega_k <- 2 * pi * 1/fs
> 1.0000000 * exp(-1i * omega_k * 0) +
  0.6234898 * exp(-1i * omega_k * 1) +
  -0.2225209 * exp(-1i * omega_k * 2) +
  -0.9009689 * exp(-1i * omega_k * 3) +
  -0.9009689 * exp(-1i * omega_k * 4) +
  -0.2225209 * exp(-1i * omega_k * 5) +      
  0.6234898 * exp(-1i * omega_k * 6) +
  1.0000000 * exp(-1i * omega_k * 7)
[1] 3.843377+1.591979i

We can see it agrees with the value we got from FFT.

Fast Fourier Transform (FFT)

FFT is a recursive divide and conquer algorithm that reduces the time complexity of Fourier Transform from O(N2)O(N^{2}) to O(Nlog(N))O\Big(N\mathrm{log}(N)\Big). It is termed as one of the most important algorithm of all time. The key idea is there are alot of repeated symmetries in the calculation of X(ω)X(\omega), and they only need to be calculated once.

Firstly, let us do the Fourier Transform the long way:

X(k)=n=0N1x(n)eiωknk={0,,N1}\begin{aligned} X(k) &= \sum_{n = 0}^{N - 1}x(n)e^{-i\omega_{k} n}\\ k &= \{0, \cdots, N - 1 \} \end{aligned}
res <- c()
N <- length(xn)
for (k in 0:(N - 1)) {
  res2 <- 0
  for(j in 0:(N - 1)) {
    res2 <- res2 + xn[j + 1] * exp(-1i * 2 * pi * k * j / N)       
  }
  res <- c(res, res2)
}
> res
[1]  1.000000e+00+0.000000e+00i  3.843377e+00+1.591979e+00i
[3] -3.019377e-01-3.019377e-01i -4.143904e-02-1.000427e-01i
[5]  8.881784e-16-5.040594e-16i -4.143904e-02+1.000427e-01i
[7] -3.019377e-01+3.019377e-01i  3.843377e+00-1.591979e+00i

Next we divide the series into 2 parts. Even 2m2m and odd 2m+12m+1:

X(k)=n=0N1x(n)eiωkn=m=0N21x(2m)eiωk2m+m=0N21x(2m+1)eiωk(2m+1)=m=0N21x(2m)eiωk2m+eiωkm=0N21x(2m+1)eiωk2m=m=0N21x(2m)ei2πkN2m+ei2πkNm=0N21x(2m+1)ei2πkN2m=m=0N21x(2m)ei2πkmN2+ei2πkNm=0N21x(2m+1)ei2πkmN2\begin{aligned} X(k) &= \sum_{n = 0}^{N - 1}x(n)e^{-i\omega_{k} n}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} + \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} (2m + 1)}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} + e^{-i\omega_{k}}\sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i 2\pi \frac{k}{N} 2m} + e^{-i 2\pi \frac{k}{N}}\sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i 2\pi \frac{k}{N} 2m}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i 2\pi \frac{km}{\frac{N}{2}}} + e^{-i 2\pi \frac{k}{N}}\sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i 2\pi \frac{km}{\frac{N}{2}}} \end{aligned}

In each step, we break the equation into two parts and each part is half the size of the parent. We can then recursively reduce the series by half and end up with only 1 element and:

x(0)eiωk×0=x(0)\begin{aligned} x(0)e^{-i\omega_{k}\times 0} &= x(0) \end{aligned}

Note that the factor eiωke^{i\omega_{k}} does not depend on mm and is the same for all N1N - 1 recursions.

Below is the algorithm implemented in R and using the earlier cosine example:

fft <- function(x, k = 1) {
  n <- length(x)

  if (n == 1) {
    return(x)
  }

  even <- fft3(x[seq(1, n, 2)], k)
  odd <- fft3(x[seq(2, n, 2)], k)
  factor <- exp(-1i * 2 * pi / n * k)    

  result <- even + odd * factor

  result
}

> for (k in 1:length(xn)) {
+   print(fft(xn, k))
+ }
[1] 3.843377+1.591979i
[1] -0.3019377-0.3019377i
[1] -0.041439-0.1000427i
[1] 7.771561e-16-5.040594e-16i
[1] -0.041439+0.1000427i
[1] -0.3019377+0.3019377i
[1] 3.843377-1.591979i
[1] 1+0i

Let us do all kk in one function:

fft <- function(x) {
  n <- length(x)

  if (n == 1) {
    return(x)
  }

  even <- fft(x[seq(1, n, 2)])
  odd <- fft(x[seq(2, n, 2)])
  factor1 <- exp(-1i * 2 * pi / n * seq(0, n / 2 - 1))
  factor2 <- exp(-1i * 2 * pi / n * seq(n / 2, n - 1))

  result <- c(even + factor1 * odd, even + factor2 * odd)

  result
}

> fft(xn)
[1]  1.000000e+00+0.000000e+00i  3.843377e+00+1.591979e+00i
[3] -3.019377e-01-3.019377e-01i -4.143904e-02-1.000427e-01i
[5]  7.771561e-16-6.123234e-17i -4.143904e-02+1.000427e-01i       
[7] -3.019377e-01+3.019377e-01i  3.843377e+00-1.591979e+00i

Note we have 2 factors in the function.

Because we have broken down each even and odd by half, they each would have length N2\frac{N}{2}. In other words, the even and odd parts are periodic over ±N2\pm\frac{N}{2}. We can then reduce that to only one factor (and cut down the amount of work by half).

X(k+N2)=m=0N21x(2m)eiωk+N22m+eiωk+N2m=0N21x(2m+1)eiωk+N22m=m=0N21x(2m)eiωk2m+eiωk+N2m=0N21x(2m+1)eiωk2m\begin{aligned} X\Big(k + \frac{N}{2}\Big) &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k + \frac{N}{2}} 2m} + e^{-i\omega_{k + \frac{N}{2}}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k + \frac{N}{2}} 2m}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} + e^{-i\omega_{k + \frac{N}{2}}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m} \end{aligned}

Since:

eiωk+N2=eiωkiωN2=eiωki2πN2N=eiωkeiπ=1×eiωk=eiωk\begin{aligned} e^{-i\omega_{k + \frac{N}{2}}} &= e^{-i\omega_{k} - i\omega_{\frac{N}{2}}}\\ &= e^{-i\omega_{k} - i 2\pi \frac{N}{2N}}\\ &= e^{-i\omega_{k}}e^{- i \pi}\\ &= -1 \times e^{-i\omega_{k}}\\ &= -e^{-i\omega_{k}} \end{aligned} X(k+N2)=m=0N21x(2m)eiωk2m+eiωk+N2m=0N21x(2m+1)eiωk2m=m=0N21x(2m)eiωk2meiωkm=0N21x(2m+1)eiωk2m\begin{aligned} X\Big(k + \frac{N}{2}\Big) &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} + e^{-i\omega_{k + \frac{N}{2}}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m}\\ &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} - e^{-i\omega_{k}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m} \end{aligned}

In summary:

X(k)=m=0N21x(2m)eiωk2m+eiωkm=0N21x(2m+1)eiωk2mX(k+N2)=m=0N21x(2m)eiωk2meiωkm=0N21x(2m+1)eiωk2m\begin{aligned} X(k) &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} + e^{-i\omega_{k}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m}\\ X\Big(k + \frac{N}{2}\Big) &= \sum_{m = 0}^{\frac{N}{2} - 1}x(2m)e^{-i\omega_{k} 2m} - e^{-i\omega_{k}} \sum_{m = 0}^{\frac{N}{2} - 1}x(2m + 1)e^{-i\omega_{k} 2m} \end{aligned}

We can simplify the above code using the above equation as follows:

fft <- function(x) {
  n <- length(x)

  if (n == 1) {
    return(x)
  }

  even <- fft2(x[seq(1, n, 2)])
  odd <- fft2(x[seq(2, n, 2)])

  factor <- exp(-1i * 2 * pi / n * seq(0, n / 2 - 1))

  result <- c(even + factor * odd, even - factor * odd)

  result
}
> fft(xn)
[1]  1.000000e+00+0.000000e+00i  3.843377e+00+1.591979e+00i
[3] -3.019377e-01-3.019377e-01i -4.143904e-02-1.000427e-01i      
[5]  7.771561e-16+0.000000e+00i -4.143904e-02+1.000427e-01i
[7] -3.019377e-01+3.019377e-01i  3.843377e+00-1.591979e+00i

Note that the above algorithm assumes the number of elements is a power of 2. More work (like padding or other ways) are needed to support non-power of 2.

Inverse Fourier Transform

To recap:

xn=1Nk=0N1Xke+iωknωk=2πkNn={0,,N1}\begin{aligned} x_{n} &= \frac{1}{N}\sum_{k = 0}^{N-1}X_{k}e^{+i \omega_{k}n}\\[5pt] \omega_{k} &= 2\pi \frac{k}{N}\\[5pt] n &= \{0, \cdots, N-1\} \end{aligned}

Using the same example as before:

> fft(xn)
[1]  0.9999999999999990007993+0.0000000i  3.8433767734721757669547+1.5919788i
[3] -0.3019377358048381254640-0.3019377i -0.0414390376673379190464-0.1000427i
[5]  0.0000000000000007771561+0.0000000i -0.0414390376673376970018+0.1000427i
[7] -0.3019377358048382364863+0.3019377i  3.8433767734721762110439-1.5919788i       

Firstly, let us do the long calculation that has O(n2)O(n^{2}) time complexity:

fs <- 8
fn <- fs / 2
f <- 1
omega <- 2 * pi * f
n <- seq(0, 1, length = fs)
xn <- cos(omega * n[1:length(n)])
freqs <- fft(xn)

N <- length(xn)
xn2 <- rep(0, N)
for (n in 1:N) {
  for (k in 1:N) {
    xn2[n] <- xn2[n] + freqs[k] * exp(1i * 2 * pi * (k - 1) / N * (n - 1))
  }
}
> Re(xn2 / N)
[1]  1.0000000  0.6234898 -0.2225209 -0.9009689 -0.9009689 -0.2225209  0.6234898  1.0000000
> xn
[1]  1.0000000  0.6234898 -0.2225209 -0.9009689 -0.9009689 -0.2225209  0.6234898  1.0000000       

We can see that the result match with each other. Next we employ inverse FFT. FFT and IFFT have similar form, so the computation for FFT can be easily generalized to IFFT:

gsignal::ifft(freqs)
[1]  1.0000000  0.6234898 -0.2225209 -0.9009689 -0.9009689 -0.2225209  0.6234898  1.0000000       

Fourier Series vs Fourier Transform

Let us see the representation from both fourier series and fourier transform on x(t)x(t):

x(t)=k=Ckeikω0tx(t)=12πX(ω)eikωt dωxn=1Nk=0N1Xke+iωkn\begin{aligned} x(t) &= \sum_{k = -\infty}^{\infty}C_{k}e^{ik\omega_{0}t}\\ x(t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{ik\omega t}\ d\omega\\ x_{n} &= \frac{1}{N}\sum_{k = 0}^{N-1}X_{k}e^{+i \omega_{k}n} \end{aligned}

The main reason why we do a Fourier tranform rather than FSC is because Fourier Transform can be used for both aperiodic and periodic signals.

See Also

Fourier Series

References

The Intuitive Guide to Fourier Analysis and Spectral Estimation: with Matlab

Iain Explains Signals, Systems, and Digital Comms (YouTube)

Python Numerical Methods

An Introduction and Analysis of the Fast Fourier Transform (Thao Nguyen)

Jason

Passionate software developer with a background in CS, Math, and Statistics. Love challenges and solving hard quantitative problems with interest in the area of finance and ML.